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Improved description of the potential energy surface in BaTiO3 by anharmonic phonon coupling
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Barium titanate (BT) based materials are at the forefront of materials being searched as possible candidates
for the replacement of lead-based compositions in applications ranging from piezoelectrics to energy storage de-
vices. Computational methods are very promising to increase the efficiency of materials discovery, provided that
finite temperature properties can be realistically computed using, for example, molecular dynamics (MD). In this
work, we present a systematic increase of the quality of MD simulations via an alternative way to calculate anhar-
monic contributions to the potential energy surface (PES) of barium titanate. A large number of first-principles
calculations are performed, which are subsequently used to parametrize an effective Hamiltonian. To test the ef-
fects on various physical properties, MD simulations for the determination of transition temperatures, hysteresis,
and permittivity of BT are shown. Furthermore, measurements were performed on BT single crystals to compare
them directly with the MD simulations. It is observed that by incorporating a large number of anharmonic
couplings, the description of the local minima in the PES becomes more accurate than in previous simulations.
This leads to a better prediction of phase transition temperatures and shows the importance of anharmonic
couplings in barium titanate. The presented approach can be directly adapted for other perovskite structures.
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I. INTRODUCTION

An ever-growing demand for environmentally friendly
materials is impacting the microelectronics industry. Many
devices where ferroelectric materials are currently used are
primarily based on environmentally critical lead-containing
materials. In particular, the application of ferroelectrics as
piezoelectric actuators [1] and as capacitive energy storage
devices [2] has received renewed attention in recent years.
Therefore, while it is of great importance to search for new
alternative ferroelectric materials, there is also a need to un-
derstand the fundamental properties of established materials
to provide clear goals for this search. Important parameters
that need to be optimized in lead-free ferroelectrics are, for
instance, piezoelectric coefficients, piezoelectric coupling fac-
tors, dielectric permittivity, and recoverable energy density.
The compositional search space for lead-free perovskites is
very large [3–5]; hence computational data-driven or even
artificial intelligence (AI) methods are needed to improve the
efficiency of materials discovery and accelerate experimental
procedures [6], which are often based on trial and error. To
enable such computational methodologies in the absence, or
scarcity, of experimental data, it is necessary to calculate
material properties at finite temperatures based on supercells
consisting of millions of atoms—in order to reproduce both
short-range and long-range order. Such molecular dynamics
(MD) simulations rely on approaches derived from density
functional theory (DFT) involving, for example, effective
Hamiltonians [7–9], which thus need to be developed case by
case for different compositions.

*florian.mayer@mcl.at

In this work, we address the effective Hamiltonian ap-
proach taking pure barium titanate [BaTiO3 (BT)] as an
example of a lead-free perovskite material. BT is considered
as the prototypical ferroelectric material, and many of its
chemical modifications have demonstrated excellent perfor-
mance in piezoelectric [10], energy storage [11], microwave
[12], and electrocaloric [13] applications. BT itself is already
quite a complex material. It shows four different phases,
three of which (rhombohedral, orthorhombic, and tetragonal)
are ferroelectric, whereas the high-temperature cubic phase
is paraelectric. The corresponding phase transitions make
this material and its modifications interesting for many ap-
plications since excellent properties such as giant dielectric
permittivity and large piezoelectric coefficients, driven by a
large spontaneous polarization, can be observed close to these
phase transitions [14]. Various methods have been used to
explain the origins [15] of ferroelectric behavior in BT. The
primary examples of this are first- principles calculations
based on density functional theory (DFT) [16–19], semiem-
pirical methods [20], and phase-field approaches [21,22].
Devonshire was one of the first to study the origin of ferroelec-
tricity in BT using Landau-Devonshire theory [23,24]. In the
1990s, Cohen and Krakauer [17] showed the now well-known
double well shaped energy surface of BT calculated using
DFT. This was followed by the development of semiempirical
models, which are still used in the simulation of BT. Of
particular note is the work of Zhong et al. [18] in developing
effective Hamiltonians to simulate properties at finite tem-
peratures. The basic idea was to reduce the complexity and
describe the potential energy surface as a function of a small
number of variables [25], where first-principles calculations
can determine the required parameters. In the early stages, this
approach was a mean-field theory which was later adapted to
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a local-mode theory [26] allowing simulations of supercells.
Furthermore, this approach has been continuously extended to
investigate doped systems as well [7–9]. In 2008, Nishimatsu
et al. [27] revised this concept by giving a makeover to the
formalism, thereby increasing efficiency and accuracy.

In 2017, Paul et al. [28] showed that the extension of the
self-energy by contributions from anharmonic couplings to
higher-energy phonon modes gives an improved description
of the potential energy surface. Since the original formalism
is parametrized exclusively by the soft mode and its dis-
placement pattern, the extension by including further phonon
modes offers an interesting possibility to increase the accuracy
of the effective Hamiltonian.

In this paper we introduce a revised effective Hamilto-
nian which is based on a larger number of anharmonic terms
which, therefore, yield a better description of the potential
energy surface. Furthermore, we present a systematic way
of deriving these anharmonic couplings from first- principles
calculations. To test our revised model, we have carried out
various measurements on BT single crystals and compared
them with predictions from our simulations. The focus of this
benchmark is on dielectric properties such as permittivity and
hysteresis curves.

This paper is organized as follows: In Sec. II, a re-
vised scheme for including anharmonic couplings for the
self-energy in the effective Hamiltonian approach is derived.
Building on this, in Sec. III, we show the parametrization by
first-principles calculations. Finally, Sec. IV uses our param-
eter set for MD simulations and compares it to experimental
measurements on BT single crystals.

II. THEORETICAL FRAMEWORK

A. Definition of local-mode self-energy

In 2008, Nishimatsu et al. [27] presented a revised effective
Hamiltonian, which has the following form:

H eff = M∗
dipole

2

∑
R,α

u̇2
α (R) + M∗

acoustic

2

∑
R,α

ẇ2
α (R)

+V self ({u}) + V dpl({u}) + V short ({u})

+V elas,homo(η1, . . . , η6) + V elas,inho({w})

+V coupl,homo({u}, η1, . . . , η6)

+V coupl,inho({u}, {w}) − Z∗ ∑
R

ε · u(R). (1)

The Hamiltonian is a function of variables {u}, the am-
plitude of the optical soft mode, where the brackets {· · · }
represent a set of amplitudes in a supercell. Further vari-
ables within the Hamiltonian are dimensionless displacement
vectors w for each unit cell and strain variables ηl in Voigt
notation. M∗

dipole and M∗
acoustic represent effective masses of u

and w, respectively. R is the position of a unit cell within the
supercell. Z∗ is the Born effective charge corresponding to the
soft mode and ε represents an external field. The time deriva-
tives of the variables are given by u̇α and ẇα , where α denotes
the Cartesian component. The total energy comprises five
potential energy contributions: a local-mode self-energy V self ,
the dipole-dipole interaction V dpl, the short-range interaction
V short, the homogeneous and inhomogeneous contributions
of the elastic energy (V elas,homo and V elas,inho, respectively),
and the homogeneous and inhomogeneous contributions of
the strain-phonon coupling (V coupl,homo and V coupl,inho, respec-
tively). For enabling MD simulations, the kinetic energies of
the optical soft mode and the long-wavelength limit of the
acoustic branch [first and second terms on the right-hand side
of Eq. (1)] are considered. The last term in Eq. (1) allows
applying external fields to the supercell. A more detailed
description of all terms can be found in Ref. [27].

To derive a scheme for including anharmonic couplings to
higher-energy phonons, we first shortly recap the definition
of the local-mode self-energy as found in the literature [29].
The original mathematical expression defined by King-Smith
et al. [25] was given by a fourth-order polynomial of the
soft-mode amplitude vector u. Nishimatsu et al. [29] extended
this expression up to the eighth order for a more accurate
description of anharmonic contributions originating from u.
The complete term for the self-energy defined by Nishimatsu
et al. [29] is presented in Eq. (2), where κ2, α, γ , k1, k2, k3, and
k4 represent parameters. The sum over R accounts for each
unit cell in the supercell.

V self ({u}) =
∑

R

{
κ2u2(R) + αu4(R) + γ

[
u2

y (R)u2
z (R) + u2

z (R)u2
x (R) + u2

x (R)u2
y (R)

] + k1u6(R) + k2
(
u4

x (R)∗[
u2

y (R) + u2
z (R)

]

+ u4
y (R)∗[

u2
z (R) + u2

x (R)
] + u4

z (R)∗[
u2

x (R) + u2
y (R)

]) + k3u2
x (R)u2

y (R)u2
z (R) + k4u8(R)

}
. (2)

In further sequence, we evaluate the above equation for a
single unit cell in the high-symmetry directions 〈001〉, 〈011〉,
and 〈111〉. We denote the resulting self-energies as E (u), and
obtain them by substituting the expressions u = (0, 0, u), u =
(0, u, u), and u = (u, u, u), respectively, for the soft-mode
amplitude. That results in Eqs. (2a)–(2c) and will also be used
for the parametrization in Sec. II C:

E001(u) = κu2 + αu4 + k1u6 + k4u8, (2a)

E011(u) = κu2 + (
α + 1

4γ
)
u4 + (

k1 + 1
4 k2

)
u6 + k4u8, (2b)

E111(u) = κu2 + (
α + 1

3γ
)
u4 + (

k1 + 2
9 k2 + 1

27 k3
)
u6 + k4u8.

(2c)

This energy contribution arises from local displacements
according to the displacement pattern of the soft mode. The
interaction with neighboring unit cells as well as the en-
ergy contribution of associated elastic effects is not included
here. The latter are accounted for by strain-phonon coupling
and various elastic terms in the Hamiltonian as described
above.
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B. Scheme for including anharmonic couplings

In this section, we derive a revised scheme for including
anharmonic couplings to higher-energy phonons within the
local-mode self-energy. For the construction of the effective
Hamiltonian presented in Eq. (1), the choice of a local basis
by lattice Wannier functions (LWFs) is required [30,31].
However, this choice is not unambiguous and should be
carried out under the following aspects. For cubic BT,
the highest symmetry can be obtained by the choice of
LWFs centered on the A site or B site. Since it is mainly
the B site that is responsible [31] for the ferroelectric
distortions, it is advantageous to define it as the center of
the LWFs. For the remainder of this paper, we will use
this B-centered basis for all derivations and calculations
including all phonon modes. As a next step, we have to
define the phonon modes which are serving as the basis in
the conventional effective Hamiltonian of Eq. (1). In cubic
BT, there are five eigenmodes with each of them being triply
degenerate. Besides the acoustic mode, there are three optical
modes with �15 symmetry and one optical mode with �25

symmetry [25,28,30]. Of particular interest are the optical
�15 eigenmodes, which are responsible for the ferroelectric
transition [25]. We will refer to them as u (soft mode,
imaginary frequency of 193i cm–1), v1 (178 cm–1), and v2

(468 cm–1). The corresponding eigenvectors and frequencies
can be calculated by means of DFT. For details we refer to the
next section. The eigenvector components of the interatomic
force constant (IFC) matrix for the soft mode are estimated
with values of ξBa = 0.157, ξTi = 0.774, ξO1,O2 = −0.195
and ξO3 = −0.547. Here, we listed barium, titanium, and
oxygen values in the five-atom unit cell, whereby O1 and
O2 denote the oxygens in plane with the titanium atom.
Analogously the patterns for v1 and v2 can be calculated:
ξ

v1
Ba = 0.862, ξ

v1
Ti = −0.311, ξ

v1
O1,O2 = −0.281, ξ

v1
O3 = 0.010,

and ξ
v2
Ba = −0.172, ξ

v2
Ti = 0.317, ξ

v2
O1,O2 = −0.427, ξ

v2
O3 =

0.709. To obtain the contributions of these phonons to the
ferroelectric distortion between cubic and tetragonal phase,
we started with calculating the associated displacement
pattern �f . The components of the pattern result in

fBa = 0.114 Å, fTi = 0.219 Å, fO1,O2 = −0.079 Å, and
fO3 = −0.007 Å. Comparing the ferroelectric distortion
with the soft-mode pattern shows a large overlap. Owing
to that, the main part of the ferroelectric distortion can be
described by the soft mode and, therefore, this mode is
chosen as the basis for the effective Hamiltonian in Eq. (1).
The acoustic mode is also included by the variables w within
the long-wavelength limit. The other phonons have not been
considered so far. However, Paul et al. [28] showed in their
work that not only the soft mode u, but also the coupling
with the modes v1 and v2 have an influence on the phase
transitions. To quantify this contribution, we will apply the
same approach as suggested by Paul et al. [28]. That is, we use
the equation �S = �f − ( �f · êsoft )êsoft , where �S is the fraction
of the displacement not yet covered by the soft mode. êsoft

represents the soft-mode eigenvector and �f the ferroelectric
distortion from above. Thus, the overlap of �S with the phonon
modes not yet considered in the effective Hamiltonian can
now be calculated. The determined overlap of v1 can be
quantified as 0.85 and that of v2 as 0.26. In contrast, the �25

mode shows a negligible overlap. Due to that, for an improved
description of the potential energy surface, the inclusion of v1

and v2 is relevant. The next step is to lay the mathematical
foundation for this inclusion. To account for the contributions
of these high-energy modes, Paul et al. [28] developed the
self-energy as a Taylor series in eighth order of u and second
order of v1 and v2, where mixed terms between u and either
v1 or v2 were considered. Since we cannot make a priori
statements about the importance of individual couplings we
decided to take a more general approach. Therefore, we start
with the extension of the self-energy by an approximation by
means of a multivariate Taylor series as written in Eq. (3).
In this paper, we deal exclusively with the 〈001〉 direction.
A possible involvement of the other directions will be
discussed further below. The variables Taylor series are the
amplitudes of the phonon modes u, v1, and v2. The evaluation
of the series is done around the cubic phase. Therefore,
we set u0 = 0, v1,0 = 0 and v2,0 = 0. For the soft-mode
amplitude u, we expand the series up to the eighth order
(n1 = 0, . . . , 8):

E anh
001 (u, v1, v2) =

8∑
n1

6∑
n2

6∑
n3

(u − u0)n1 (v1 − v1,0)n2 (v2 − v2,0)n3

n1!n2!n3!

(
∂n1+n2+n3 E (u, v1, v2)

∂un1∂v
n2
1 ∂v

n3
2

)
(u0, v1,0, v2,0). (3)

In contrast to Paul et al. [28], the series expansion is also performed for v1 and v2 up to the sixth order (n2,3 = 0, . . . , 6). The
series expansion in full form can be found in the Supplemental Material [32] in Eq. (S1). Due to the symmetry of the cubic phase,
various couplings are zero by definition. These can be determined, for example, by the program ISOTROPY [33,34]. The latter
was used to rewrite the full-form function from Eq. (S1) [32]. Thus, the forbidden couplings were removed and the remaining
ones were replaced by parameters ai, bi, ci, and di. The resulting function for the self-energy in the 〈001〉 direction is written in
Eq. (4). The parameters ci are analogous to those used in Eq. (2a). The parameters ai and bi, which represent couplings between
u and either v1 or v2, are introduced. The parameters di are mixed couplings of u, v1, and v2.

E001(u, v1, v2) = c0 + c1u2 + c2u4 + c3u6 + c4u8 + a1uv1 + a2v
2
1 + a3u3v1 + a4u2v2

1 + a5uv3
1 + a6v

4
1 + a7u5v1 + a8u4v2

1

+ a9u3v3
1 + a10u2v4

1 + a11uv5
1 + a12v

6
1 + b1uv2 + b2v

2
2 + b3u3v2 + b4u2v2

2 + b5uv3
2 + b6v

4
2 + b7u5v2

+ b8u4v2
2 + b9u3v3

2 + b10u2v4
2 + b11uv5

2 + b12v
6
2 + d1v1v2 + d2u2v1v2 + d3uv2

1v2 + d4uv1v
2
2 + d5v

3
1v2

+ d6v
2
1v

2
2 + d7v1v

3
2 + d8u4v1v2 + d9u3v2

1v2 + d10u3v1v
3
2 + d11u2v3

1v2 + d12u2v2
1v

2
2 + d13u2v1v

3
2 + d14uv4

1v2

+d15uv3
1v

2
2 + d16uv2

1v
3
2 + d17uv1v

4
2 + d18v

5
1v2 + d19v

4
1v

2
2 + d20v

3
1v

3
2 + d21v

2
1v

4
2 + d22v1v

5
2 . (4)
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The derived equation contains many anharmonic cou-
plings, so that a direct determination of the necessary
parameters as shown in Paul et al. [28] is no longer possible.
To determine all couplings as accurately as possible, an alter-
native approach involving the fitting of anharmonic couplings
[35] will be used in Sec II D. For now, let us assume that
we have already determined all the coupling parameters. That
means we now have a function for the local-mode self-energy,
which depends on u, v1, and v2, and is not compatible with
the effective Hamiltonian defined in Eq. (1). A solution to
this issue would be to extend the whole Hamiltonian by these
additional degrees of freedom, but that would be beyond the
scope of this paper. In fact, a significant advantage of the
effective Hamiltonian lies in its computational speed, and
adding more degrees of freedom would change that. To recast
our expansion in Eq. (3) to a function of one variable, we
can compute the amplitudes v1 and v2 that minimize [28] the
self-energy for any value of u. Unfortunately, an analytical
solution is not feasible in our case due to the complexity of
Eq. (3). Therefore, we decided to use a numerical optimization
scheme to search for the minimizing v1,min(ui ) and v2,min(ui )
amplitudes corresponding to a given discrete value of ui. This
allows us to compute the minimum self-energy as a function
of u for a chosen discrete range, as shown schematically in
this equation:

E001(ui ) = E anh
001 [ui, v1,min(ui ), v2,min(ui )]. (5)

As the method for the minimization of v1 and v2 we used
the Nelder-Mead algorithm [36] for two dimensions.

Finally, for the effective Hamiltonian, we again need an
analytic function for the self-energy. The simplest solution is
to take Eq. (2a) and fit the data, which now include contribu-
tions from anharmonic couplings. This approach is similar to
the approximation in Paul et al. [28], where they insert their
additional anharmonic contribution into the parameters k1

and k4.
An advantage of the above-derived scheme for including

anharmonic couplings is that it can be used analogously for
the other directions 〈011〉 and 〈111〉. The only difference lies
in estimating the coupling parameters via fitting, which will
be discussed in detail in the next section.

C. Parameters of conventional Hamiltonian

In this section we briefly discuss the parametrization of
the conventional effective Hamiltonian, i.e., the one defined
by Nishimatsu et al. [29]. However, we will refrain from a
detailed description of all energy terms to be parametrized
since this has already been discussed sufficiently in other
publications [25,28,29]. Since we use the PBEsol functional
[37] in contrast to other parametrizations in the literature,
we will nevertheless give an overview of the differences
and similarities. A detailed description of the DFT settings
and a comparison of the obtained parameters with other
exchange-correlation functionals [38,39] are provided in the
Supplemental Material [32]. In general, parametrization starts
with the relaxation of the cubic phase. In our case, this re-
sulted in a lattice constant of a0 = 3.987 Å, which agrees very
well with other PBEsol results from the literature [20,40].
Compared to the value obtained with the Wu-Cohen func-

tional [29,41] of aWC = 3.986 Å, the PBEsol yields an almost
identical value. Also the SCAN (Strongly-constrained and
appropriately-normed) functional [42] yields a very similar
value [28] of aSCAN = 3.99 Å. Altogether, all three function-
als yield results close to the experimental value [25] of aexpt =
4.01 Å.

The next step is to calculate the eigendisplacements, which
are the eigenvectors of the second-order force constant matrix.
The latter was calculated using the frozen-phonon method im-
plemented within the VASP package (IBRION 5 tag). To check
the obtained results, we also carried out a density functional
perturbation theory (DFPT) calculation using the IBRION 7 tag
within VASP. Both approaches agree well with each other and
yield eigenvector components as listed in the previous section.
We now take this soft-mode displacement pattern as the basis
for the effective Hamiltonian. To parametrize the local-mode
self-energy, we displace the atoms in the different directions,
〈001〉, 〈011〉, and 〈111〉, using the soft-mode pattern. Then
Eqs. (2a)–(2c) are used to determine the parameters κ, α, γ

and k1–k4 by fitting. An overview of the obtained values
can be found in Table I. Since these parameters strongly
depend on the chosen order of the polynomial and on the
chosen exchange-correlation functional, we refrain here from
a comparison with values from the literature. Another energy
contribution represents the coupling of phonons with the de-
formation of the unit cell. The parametrization for this case
was performed in two different ways. The first method adheres
to the literature [25]; i.e., atomic displacements according to
the soft mode were frozen in, and the shape of the unit cell
was varied. That allows the calculation of the change in the
harmonic coefficient κ as a function of strain η, which in
turn allows the coupling parameters to be determined. As a
second approach, we considered the following. We displaced
the atoms analogously to the first approach, but then the
internal coordinates were fixed and the unit cell shape and
volume were relaxed for each displacement. VASP allows this
through the setting ISIF 6. To extract the coupling parame-
ters, we used the scheme Nishimatsu et al. used for their
valley tracing method (VTM) [29]. The results of the two
approaches vary slightly, with values of B1xx = − 230.75
eV/Å2, B1yy = −21.76 eV/Å2, and B4yz = −15.56 eV/Å2

determined with the first approach. In contrast, the values
of the second method are B1xx = − 235.06 eV/Å2, B1yy =
−19.34 eV/Å2, and B4yz = −15.33 eV/Å2. Since the second
method optimizes each unit cell and allows a larger number
of calculated displacements, these parameters are used for the
rest of this paper. A more detailed description of each method
can be found in the Supplemental Material [32]. Next, we
turn to the determination of elastic constants. Since we use
the cubic phase as a reference for the description of our sys-
tem, the number of independent constants is reduced to three.
These are given by B11, B12, and B44, whereby these values are
obtained from the elastic constants multiplied by the unit cell
volume. The calculation was performed by applying different
deformations [29] to the unit cell and fitting the equation of
state. The corresponding results are listed in Table I.

The determination of short-range interaction parameters
j1– j7 was done analogously to the procedure proposed by
Nishimatsu et al.; that is, a series of phonon calculations at
various high-symmetry points in reciprocal space was used
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TABLE I. Parameters for the effective Hamiltonian describing pure BT.

Elastic and coupling Self-energy Short range and long range

m∗ (amu) 38.148 κ (eV/Å2) –1.965 Z∗ (e) 10.267
B11 (eV) 126.137 κ2 (eV/Å2) 8.007 ε∞ 6.847
B12 (eV) 42.391 α (eV/Å4) 123.492 j1 (eV/Å2) –2.060
B44 (eV) 50.046 γ (eV/Å4) –165.344 j2 (eV/Å2) –1.173
B1xx (eV/Å2) –235.064 k1 (eV/Å6) –528.388 j3 (eV/Å2) 0.680
B1yy (eV/Å2) –19.341 k2 (eV/Å6) 123.688 j4 (eV/Å2) –0.610
B4yz (eV/Å2) –15.333 k3 (eV/Å6) 307.317 j5 (eV/Å2) 0.000

k4 (eV/Å8) 3370.229 j6 (eV/Å2) 0.277
j7 (eV/Å2) 0.000

to provide the necessary eigenvalues for the linear system of
equations (see Eqs. (15a)–(15g) in Ref. [29]). By solving this
system of equations, the parameters j1– j7 and κ2 could be
determined, which are listed in Table I. It should be noted that
the κ2 value was adapted according to Eq. (17) in Ref. [29].
The remaining parameters in Table I were derived from a
DFPT calculation. Table I also includes the Born effective
charge of the soft mode as well as the optical dielectric
constant, obtained from DFPT. The effective mass m∗ was
calculated by using the soft-mode eigenvector and the corre-
sponding atomic masses of the ions.

D. Fitting of anharmonic couplings

In Sec. II B, we discussed a scheme to include additional
anharmonic terms, whereas here, the quantitative determi-
nation of the corresponding parameters shall be addressed.
The chosen approach, i.e., the expansion of the self-energy
in three variables v1, v2, and u up to the sixth-, respectively,
eighth-order results in a relatively large number of coupling
constants. An explicit calculation is possible only for a few of
these parameters, an example of which can be found in Paul
et al. [28]. Nevertheless, to determine all required parameters,
we follow a similar approach as Erba et al. [35]. That is,
we want to determine the anharmonic couplings by fitting
Eq. (3) to a correspondingly large set of DFT calculations. The
dataset must be built by various displacements according to
the displacement patterns of u, v1, and v2. These patterns are
obtained from the initial phonon calculation of the previous
section. We already reported the patterns for the soft mode,
v1, and v2 in the previous section. We used these patterns
to create structures with different displacements of the atoms
by superposition. For the 〈001〉 direction, we generated about
2000 of these structures and calculated the corresponding total
energies using DFT. This dataset was then used to fit Eq. (4)
to determine all coupling parameters. Since we have a large
number of parameters to determine, much emphasis was put
on the stability of the fit. For that purpose, different fit al-
gorithms like Levenberg-Marquardt, Nelder-Mead, or Powell
were used to cross-check the results. Furthermore, a cross-
validation procedure was used to investigate the quality of
the fit function. A detailed description of the above-mentioned
investigations can be found in the Supplemental Material [32].
Concerning the main task, the determination of the coupling
parameters, it could be shown that all algorithms yield the
same global minimum. The associated calculated parameters

are listed in Table S2 [32]. A visualization of the derived
potential energy as a function of ux, v1x, and v2x is provided
in Fig. 1(a). It can be observed that the local minima of the
potential energy surface are slightly shifted by the inclusion of
v1 and v2. That means for each u > 0 there are associated non-
vanishing amplitudes v1 and v2, which minimize the energy.

A final necessary step is to incorporate these anharmonic
couplings into the effective Hamiltonian. As discussed in
Sec. II B, we want to take the relatively simple way here
and pack the couplings into adapted k1 and k4 parameters.
To do this, we evaluate Eq. (4) using the parameters of Ta-
ble S2 [32] for a discrete range of u = 0 to 0.25 Å and
simultaneously minimize over the amplitudes v1 and v2 [see
Fig. 1(b)]. Equation (2a) is then fitted to the data using k1 and
k4 as fit parameters. The resulting fitted parameters k′

1 and k′
4

are −1443.850 eV/Å6 and 17 216.816 eV/Å8, respectively.
A visualization of the self-energy, with and without additional
anharmonic couplings, as a function of u in the 〈001〉 direction
is presented in Fig. 1(c).

Although in this paper we are mainly concerned with the
self-energy in the 〈001〉 direction, the two other directions,
〈011〉 and 〈111〉, should also be briefly discussed here. The
calculation of the coupling parameters is analogous to the
〈001〉 direction, whereby the input structures are generated
by displacing atoms in two or three dimensions using the
displacement patterns, respectively. The Taylor expansion for
these directions can be done in two ways; either one uses
vectors u, v1, and v2, or one treats each direction individually.
The latter is somehow analogous to Eqs. (2a)–(2c) and has
the advantage that the series expansion from Eq. (3) can be
used. We proceeded with the second approach and also cal-
culated the remaining two directions and the corresponding
renormalized total energy. The incorporation of these addi-
tional directions into the effective Hamiltonian can be done
with a refit using the parameters γ , k2, and k3. However,
it became apparent that these parameters are only partially
capable of properly incorporating the additional information
(see Supplemental Material [32] for more details). A so-
lution to overcome this issue is to extend the self-energy
from Eq. (2) with additional parameters. For the remainder
of this paper, however, we use the parameter set presented
above. It should be noted, nevertheless, that this does not
leave the other two directions untouched. The incorporation
of anharmonic couplings by adjusting k1 and k4 also impacts
the 〈011〉 and 〈111〉 directions as one can see in Eqs. (2b)
and (2c).
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FIG. 1. Visualization of self-energy as a function of the three phonon mode amplitudes u, v1, and v2 along the 〈001〉 direction (a). Panel
(b) shows the values for v1 and v2 that minimize the self-energy for a given u. Panel (c) shows the self-energy back-transformed to a function
of one variable u by minimizing the energy with respect to v1 and v2 for a given u.

III. METHODOLOGICAL DETAILS

A. Experimental setup

A BT single crystal, polished on both sides, was purchased
from SurfaceNet GmbH (48432 Rheine, Germany). Prior to
measuring, the sample was held at 353 K for a week in air
atmosphere. Electrical contacts were made with silver paint
on the top and bottom of the sample (5 × 2 × 0.1 mm) and
the wires connected in—typical for dielectric measurements
[43]—a pseudo-four-point configuration. The dielectric data
in a frequency range from 20 Hz to 1 MHz were collected with
an E4980A Precision LCR meter (Agilent). The static hystere-
sis loops were measured using an AixACCT TF2000 Analyzer
combined with a high-voltage booster (HVB 1000) and a
Krohn-Hite model 7500 amplifier. For both measurements the
temperature (300–540 K) was controlled via a nitrogen flow
based cryostat (Novocontrol Quatro Cryosystem).

B. DFT calculations for parametrization
of the effective Hamiltonian

For all DFT calculations used for parametrization of the ef-
fective Hamiltonian, we applied the projector-augmented [44]
DFT package VASP [45–48] and PBEsol [37] as the exchange-
correlation functional. All calculations with five-atom unit
cells were done using a k grid of size 8 × 8 × 8 and an energy
cutoff of 520 eV. The 2 × 2 × 2 supercell calculations were
carried out with a k grid of 4 × 4 × 4 and an energy cutoff of
520 eV.

C. MD setup

All MD simulations in the following section were carried
out in the NV T ensemble. The Nosé-Poincaré thermostat [49]
was used to maintain a constant temperature. For the simu-
lation of the phase diagram, we decided to use a simulation

box size of 16 × 16 × 16 unit cells. A comparison with other
sizes can be found in the Supplemental Material [32]. A time
step of 0.002 ps was used for all simulations. The system
was thermalized for 360 ps, and then statistical values were
recorded over 40 ps. The phase diagram was obtained using
a temperature step of 1 K. The simulation of permittivity as a
function of temperature was performed as follows: For each
temperature step, which was chosen to be 1 K, the system
was thermalized for 2 ns, and then over 2 ns the statistical
values were recorded. A simulation box of size 16 × 16 × 16
was also chosen here. The permittivity was calculated using
the fluctuations of the dipoles, as shown in Eq. (6). Here, e
represents the elementary charge and V the volume of the unit
cell.

εr = e2Z∗2

V kBε0T
(〈u2〉 − 〈u〉2). (6)

The simulations of polarization–electric field hysteresis
curves (P-E loops) were performed for the quasistatic case.
An external electric field was applied from –100 to +100
kV/cm in 0.5 kV/cm steps. For each field strength, the system
was thermalized over 360 ps, and then the required values
were recorded over 40 ps. Here, we chose a simulation box
size of 24 × 24 × 24. A comparison to dynamic loops at high
frequencies can be found in the Supplemental Material [32].
All simulations were performed using the open-source code
FERAM developed by Nishimatsu et al. [27,29].

IV. RESULTS

This section will now apply the elaborated parametrization
and use it to perform molecular dynamics simulations. At
the same time, we performed measurements on BT single
crystals to provide a basis for comparison of properties such
as dielectric permittivity and ferroelectric hysteresis curves.
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(a)

(b)

FIG. 2. Phase diagram in terms of the temperature evolution of
lattice constants ai for BT simulated by MD using the two param-
eter sets (a) without and (b) with additional anharmonic couplings
to higher-energy phonons. The black line was obtained by cooling
and the red line by heating the system in the MD simulation. The
dashed vertical lines represent the experimentally observed transition
temperatures.

A. Transition temperatures

First, we consider the simulated phase diagram, i.e., the
evolution of the lattice constants as a function of tempera-
ture, as shown in Fig. 2. To demonstrate the influence of the
additional anharmonic couplings, we also present the result
of the conventional Hamiltonian. To account for the effect of
hysteresis, heating and cooling simulations were performed
in each case, and the transition temperature was taken as the
average value between the two. It is obvious that the transition

temperatures are significantly closer to the experimental re-
sults when additional anharmonic couplings are incorporated.
Further, it is observed that the lattice parameters also change
accordingly. Thus, an increase of the lattice parameters is ob-
served for all monitored temperatures. The cubic phase shows
a lattice constant of 4.00 Å at 405 K in the simulation, which is
in excellent agreement with experimental data [50] of 4.00 Å.
The lattice parameters of the tetragonal phase, compared with
experimental values [50] of a = 3.99 Å and c = 4.04 Å, are
slightly overestimated by the simulation. The same is ob-
served for the lattice parameters [50] of the orthorhombic and
rhombohedral phases. For the sake of completeness, thermal
expansion should also be briefly discussed here. Although
we include a large number of anharmonic terms, the thermal
expansion is described qualitatively wrong as shown in Fig. 2.
However, these additional couplings are not actively present
in our simulation and the original formalism of Nishimatsu
et al. [29] is used. The latter is known to fail at reproducing
the thermal expansion [51]. A solution to this would be to
extend the formalism by the degrees of freedom of v1 and v2

and to modify the potential of the acoustic mode. However,
this is beyond the scope of this paper and may be addressed in
a future publication.

Furthermore, we want to compare our simulations with
results from the literature. For this purpose, an overview of
parametrizations using different exchange-correlation func-
tionals and the corresponding transition temperatures is
presented in Table II. The results of the LDA functional
show the largest deviation from the experimental data. The
application of a constant pressure on top of LDA yields
higher temperatures, but rather large deviations are still ob-
served. The WC-GGA functional expectedly gives results
similar to our standard PBEsol simulation. SCAN gives
similar results. The WC-GGA functional combined with a
temperature-dependent external pressure term yields the tran-
sition temperature between the cubic and tetragonal phases
close to the experimental value. Nevertheless, the best match
to experiments is demonstrated by our PBEsol-based scheme
with additional anharmonic couplings as well as another flavor
for including anharmonic couplings combined with SCAN
[28]. The good agreement between simulation and experiment

TABLE II. Comparison of transition temperatures estimated via molecular dynamics simulations based on effective Hamiltonians. The
table shows results for different exchange-correlation functionals used in the parametrization of the Hamiltonian. The first set of results is
obtained with the conventional Hamiltonian. The second set of results is obtained with applying pressure. The third set of results includes
additional anharmonic couplings. R = rhombohedral, O = orthorhombic, T = tetragonal, C = cubic, and � = Temperature.

Exchange-correlation functional Pressure R↔O O↔T T↔C

LDA [29] – 95 K –48% 110 K –60% 137 K –66%
WC-GGA [29] – 102 K –44% 160 K –42% 288 K –29%
SCAN [28] – 111 K –39% 141 K –49% 213 K –47%
PBEsol (this work) – 119 K –35% 158 K –43% 257 K –36%
LDA [29] –5 GPa 210 K 15% 245 K –12% 320 K –21%
WC-GGA [29] –2 GPa 117 K –36% 218 K –22% 408 K 1%
WC-GGA [29] –0.005 � GPa 103 K –44% 187 K –33% 411 K 2%
SCAN (anharmonica) [28] – 230 K 26% 278 K 0% 375 K –7%
PBEsol (this work, anharmonic) – 186 K 2% 255 K –8% 395 K –2%
Expt. [28,52] – 183 K 0% 278 K 0% 403 K 0%

aDifferent flavor of anharmonic coupling up to second order in v1 and v2.
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(a)

(b)

FIG. 3. Permittivity around the cubic to tetragonal phase tran-
sition as a function of (a) temperature and (b) inverse temperature,
comparing measurements on a BT single crystal (blue) and simula-
tions (red) using the effective Hamiltonian with anharmonic coupling
to higher-energy phonons. The dashed line indicates the TC deter-
mined from experiments.

suggests that the local energetic minima are better described
by including additional anharmonic couplings. To test this hy-
pothesis, we performed ab initio molecular dynamics (AIMD)
simulations for different temperatures and compared the po-
tential energy surfaces to those of the effective Hamiltonians.
As described in detail in the Supplemental Material [32], the
inclusion of anharmonic couplings contributes a significant
part to the potential energy surface. Furthermore, the energy
differences between AIMD and effective Hamiltonian become
smaller when including anharmonic couplings, which indi-
cates that the potential energy surface is better reproduced by
the adapted Hamiltonian.

B. Permittivity

The hallmark features of ferroelectric transitions are
temperature-dependent peaks in the dielectric permittivity. In
Fig. 3, we present the permittivity as a function of temperature

around the tetragonal to cubic phase transition measured on
a BT single crystal and simulated by MD using the adapted
effective Hamiltonian. Similar to the experiment, the results
for the simulations were obtained by heating the crystal, i.e.,
by increasing the temperature in the MD run. The simulated
trend of the permittivity below the phase transition shows
remarkably good agreement with the experiment. The simu-
lation estimates the maximum permittivity value directly at
the phase transition to be 25% higher than the measured one.
The value of εr above TC is slightly higher in the experiment,
whereby even a small peak can be observed at about 450
K. That may be due to an extra relaxation given by impuri-
ties present, or slight deviations from perfect stoichiometry,
in the single crystal. In summary, the simulation provides
good agreement with the measured values. The simulated
permittivity for a larger temperature range can be found in
the Supplemental Material [32].

C. P-E loops

Another essential property of ferroelectric materials rep-
resents the system’s response to external electric fields, also
known as polarization–electric field hysteresis curves (P-E
loops). In this work, we focus mainly on the temperature
range near the phase transition between the paraelectric and
ferroelectric phases (i.e., TC). Already in the 1950s, Merz [53]
showed the occurrence of double loops near TC. Therefore,
we decided that this temperature range is ideal for testing our
Hamiltonian.

As a starting point, we performed experimental measure-
ments of the P-E loops using BT single crystals. The results
are shown in Fig. 4(a). At 400 K, just below TC, we see the
typical single-loop ferroelectric hysteresis curve. Just above
it, at 406 K, we observe a double loop, but not as pro-
nounced as in Merz’s data [53]—this is likely due to the
changes in single-crystal growth techniques over the interven-
ing 70 years. At 410 K, finally, the double loop has almost
vanished. An explanation for this behavior across TC can be
found in Refs. [53,54].

In the next step, we simulated the P-E loops using our
effective Hamiltonians. To take into account the slightly lower
phase transition temperature found in our simulations, we
used the highest temperature that shows pure ferroelectric
behavior as reference; i.e., we compare simulations at 397 K
to the experiment at 400 K. Subsequently, the temperature
for the simulation was increased by the same steps as in
the experiment. The results of these simulations are shown
in Fig. 4(b). The experiment and simulation show a very
good qualitative match, even though our simulation exhibits
more pronounced double loops. This is actually in very good
agreement with the measurements by Merz [53]. Regarding
the saturated polarization, experiment and simulation agree
very well, even quantitatively. The corresponding values of
the external field in the simulation, however, are about a factor
of 5 larger compared to the experimental data.

064108-8



IMPROVED DESCRIPTION OF THE POTENTIAL ENERGY … PHYSICAL REVIEW B 106, 064108 (2022)

(a)

(b)

E E E

FIG. 4. Comparison between experimental (a) and simulated (b) P-E loops of BT near the ferroelectric-paraelectric phase transition. The
temperatures for the simulated loops were chosen according to the values of the experiment but shifted to the phase transition temperature
observed in the simulation.

V. CONCLUSION

In this work, an alternative way to incorporate a variety of
anharmonic terms to describe the potential energy surface of
BT has been shown. The scheme chosen can be easily applied
to other systems and provides a systematic extension of the
already established formalism of effective Hamiltonians. In-
stead of relying on individual anharmonic couplings, a larger
number of them is included in this work. By this approach
a renormalization of the energy surface is observed, which
subsequently contributes to an improved description of the
transition temperatures. Another advantage of our scheme is
the possible extension to all high-symmetry directions. In this
work, we focused exclusively on the 〈001〉 direction. Already
with this choice the other directions are positively influenced
via the chosen parameters and the back-transformation to the
original formalism. For further work in this area, the other
directions can be taken into account to obtain an even more
complete description of the energy surface. Furthermore, the
choice of the exchange-correlation functional plays a role. In
our case, all calculations were performed with the PBEsol
functional. This is obviously a very good choice for the cal-
culation of the required parameters and provides very similar
results as the meta-GGA functional SCAN. Comparison with
measurements on BT single crystals allowed us to quantify the
Hamiltonian as well. The simulated permittivity reflects the

measurements very well. The simulation of the hysteresis was
carried out for a quasistatic case in order to create a compari-
son with low-frequency measurements. Thereby, the absolute
values of the saturated polarization between simulation and
measurement are in good agreement. Also the occurrence of
the double hysteresis in the range of the transition temperature
TC can be confirmed by simulation and measurement. Only
regarding the values of the external field is there still room for
improvement in order to be able to quantify properties such
as the energy stored by the system. Altogether, the parame-
ter set presented here provides an excellent basis for further
studies and can be used for possible extensions for substituted
systems.
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