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Barium titanate (BT) solid solutions are used in a wide range of applications such as piezoelectric actuators
and high-performance energy storage devices. The key to achieve and tune desired macroscopic properties is the
chemical modification, which is done by substituting Ba or Ti with other homovalent or heterovalent cations. This
work uses large-scale molecular dynamics simulations based on an effective Hamiltonian approach to calculate
the macroscopic properties of BT solid solutions from first principles, thereby offering a framework for the
prediction of properties prior to materials synthesis. To this end, we elaborate on the theoretical description of
substitution in effective Hamiltonians as well as their parametrization by density functional theory calculations
for two model systems: homovalent substituted BaZrxTi1-xO3 (BZT) and heterovalent substituted BaNbxTi1-xO3

(BNT). The effective Hamiltonian for BZT obtained in this work is first used for benchmarking against other
models and experimental data on the phase diagrams and dielectric properties. Subsequently, the effective
Hamiltonian is further extended and used to parametrize BNT and compare the model’s predictions to the
available experimental data. The parameter sets obtained in this work can be used for future studies and provide
deep insight into the subject of relaxor ferroelectrics.
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I. INTRODUCTION

Relaxor ferroelectrics (RFs) have recently been the subject
of intensive investigations as possible energy storage mate-
rials with both high power and energy density [1–3]. RFs,
in essence, are ferroelectrics where the long-range polariza-
tion correlation is disrupted [1] due to chemical substitution.
On the macroscopic scale, this results in a reduction of the
hysteretic losses originating from the reorientation of po-
lar domains, which increases the recoverable energy density.
Other parameters play a role in achieving high energy density,
for instance, a high saturated polarization, small leakage cur-
rents, and a high breakdown voltage. As permittivity (and thus
saturation polarization) decreases with the loss of ferroelectric
character, one issue is how to stabilize a high permittivity
in a RF. These aspects are intimately related with how the
chemical substitution affects the local lattice structure, its po-
lar order, and how the material interacts with external applied
electric fields at atomic scale and on the mesoscale. It is thus
very important to be able to predict macroscopic electrical
properties in such systems at finite temperatures and external
fields, starting from simulated atomic scale structures. In other
words, realistic molecular dynamics (MD) simulations need to
be performed to investigate substitution effects at the atomic
level and their impact on the material’s properties.

In this work, we provide an improved model of the poten-
tial energy surface for the application in MD simulations. Our
approach is based on so-called effective Hamiltonians [4,5],
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first introduced in the early 1990s for perovskites. The re-
quired parameters for the effective Hamiltonians can entirely
be determined by first-principles calculations. Furthermore, a
significant advantage of this approach is the computational
efficiency due to the reduced number of degrees of freedom.
In the beginning, this model was a mean-field theory [5],
which was later adapted to a local-mode framework [6]. In
2010, Nishimatsu et al. [7] revised this model, improving its
accuracy. Paul et al. [8] showed that including anharmonic
couplings further enhances the quality of such simulations.
In our previous work [9], we established a more general
approach for including these couplings, which improved the
description of both phase transitions and dielectric properties.
Here we build upon our previous findings and use the pa-
rameter set for pure barium titanate (BT) as the basis for the
parametrization of effective Hamiltonians for substituted sys-
tems. In literature, such effective Hamiltonians for substituted
systems are found with different approaches for incorporating
the substituted ions. This includes the parametrization by the
virtual crystal approximation [10,11], by adding additional
terms to the Hamiltonian [12–14], or simply treating the sys-
tem by averaging [15] parameters of two constitutive systems.
The present work introduces an alternative approach based
on the following principles. First, the used Hamiltonian of
the parent system BT builds on a revised parametrization [9]
including a large number of anharmonic couplings to higher
energy phonons. That increases the accuracy of the potential
energy surface as well as the quantitative description of the
transition temperatures [9]. Second, the substituted ions are
incorporated as perturbation to the pure BT system using a
revised treatment of interactions. Thus, special consideration
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is given to the local description of the occurring substitution
effects. In addition, the presented effective Hamiltonian is
independent of concentration and hence the parametrization
procedure is more flexible and has to be performed only once.

To test our approach, we parametrize two fundamentally
different RF systems: one homovalent and one heterovalent
substituted BT. In the former case, Ti4+ ions on the B-site
are substituted by Zr4+ ions, leading to the BaZrxTi1-xO3

(BZT) solid solution. For the heterovalent case, Ti4+ are sub-
stituted by Nb5+, which yields BaNbx�1/4xTi1−5/4xO3 (BNT).
Here, it is essential to consider the presence of Ti vacancies
for charge compensation as discussed in detail in a former
publication [16]. The BZT Hamiltonian serves as the basis
for a benchmark to test our model and its assumptions. For
BZT, the effective Hamiltonians are already available, how-
ever, they lack the incorporation of additional anharmonic
couplings. These references offer the possibility to test our
approach. Furthermore, a cross check between simulations
and experimental data is presented. In the case of BNT, we
are not aware of any existing parametrizations, and therefore
we rely on experimental data to carry out a comparison with
the simulations.

The cornerstone of this investigation is the alternative
parametrization of our models from density functional the-
ory (DFT) calculations. DFT was already used in one of
our previous publications [16] to study the effects of the
above-mentioned substituents in a static picture in terms of
local volume change and impact on electrical potential. The
present paper continues our previous work by expanding the
effective Hamiltonian towards substituted systems, as pre-
sented in Sec. II. Subsequently, we discuss the parametrization
of BZT by DFT calculations, followed by a benchmark of
this Hamiltonian with other models and experimental data.
Building on this, the parametrization of BNT is presented,
followed by application of the model for simulating the phase
diagram and dielectric properties, and the comparison with the
experiments.

II. THEORETICAL FRAMEWORK

A. Effective Hamiltonian of pure BT

The basis of our simulations is the effective Hamiltonian
defined by Nishimatsu et al. [7,17], as stated in Eq. (1). This
Hamiltonian is used to describe the pure BT system. The
required parameters can be obtained by DFT calculations and
are discussed in the next section. In general, this Hamilto-
nian consists of the following energy contributions: Kinetic
energies of the optical soft-mode u and the acoustic mode w,
local-mode self-energy V self , dipole-dipole interaction V dpl,
short-range interaction V short, elastic energies V elas, strain-
phonon interactions V coupl, and interaction with an external
field. The time derivatives of the variables are represented
by u̇α and ẇα , where α denotes the Cartesian component. R
represents a translation vector indicating the position of the
unit cells within the supercell. ηi are strain variables in Voigt
notation. Z∗ is the Born effective charge associated with the
soft mode u. The brackets {} indicate a set of amplitudes
u within a supercell. M∗

dipole and M∗
acoustic are the effective

masses of the soft mode and the acoustic mode in the long

wavelength limit, respectively. The parameter ε allows ap-
plying an external field. It should be mentioned here that
for the soft mode a local basis by lattice Wannier functions
(LWFs) [18,19] centered on the B cation was chosen. This
also applies to all further calculations in which the soft mode
and its displacement pattern are used.

H eff
BTO = M∗

dipole

2

∑

R,α

u̇2
α (R) + M∗

acoustic

2

∑

R,α

ẇ2
α (R)

+V self ({u}) + V dpl({u}) + V short ({u})

+V elas,homo(η1, . . . , η6) + V elas,inho({w})

+V coupl,homo({u}, η1, . . . , η6) + V coupl,inho({u}, {w})

− Z∗ ∑

R

ε · u(R). (1)

B. Substitution via perturbation of BT

To extend the formalism for substituted systems, we add
an additional term to the effective Hamiltonian of Eq. (1).
This term accounts for effects induced by the presence of
substituents. Compared to some previous work in this area, we
are not using an averaged system as basis and, therefore, treat
the substituents in terms of a perturbation to the Hamiltonian
of the pure system [14]. A general form of the extended
Hamiltonian is stated in Eqs. (2) and (3). The new symbolic
variable σ is used to differentiate between unit cells with
different B-site ions (e.g. σ = Ti, Zr, Nb, VTi).

H eff
total({u}, {w}, ηi, {σ })

= H eff
BTO({u}, {w}, ηi ) + Hperturb.({u}, {w}, {σ }), (2)

Hpeturb. = �T ({u}, {w}, {σ }) + �V self ({u}, {σ })

+�V dpl({u}, {σ }) + V aux({u}, {w}, {σ }). (3)

The perturbation term is inspired by former works of Bel-
laiche et al. [10,12,13] as well as Mentzer et al. [14] and
consists of four different adaptations to the total energy as
written in Eq. (3). The first term �T accounts for different
effective masses and, therefore, the influence on the kinetic
energies of the optical soft-mode and the acoustic branch.

The second term �V self adapts the local-mode self-energy
by introducing the new parameters �κ2,σ , �ασ , �γσ and
�k1,σ to �k4,σ . These parameters account for the change in
local-mode self-energy when the B site is substituted with
different ions compared to Ti. The complete form of this
energy contribution is written below:

�V self ({u}, {σ })

=
∑

R

{
�κ2,σ u2(R) + �ασ u4(R)

+�γσ

[
u2

y (R)u2
z (R) + u2

z (R)u2
x (R) + u2

x (R)u2
y (R)

]

+�k1,σ u6(R) + �k2,σ

(
u4

x (R) ∗ [
u2

y (R) + u2
z (R)

]

+ u4
y (R) ∗ [

u2
z (R)+u2

x (R)
]+u4

z (R) ∗ [
u2

x (R)+u2
y (R)

])

+�k3,σ u2
x (R)u2

y (R)u2
z (R) + �k4,σ u8(R)

}
. (4)
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A further correction is made for the long-range interaction
�V dpl between dipoles. Since different B-site ions exhibit

different Born effective charges, the Z∗ must be adjusted
accordingly. As a further correction, we introduce a term
according to Refs. [10,12]. For the remainder of this paper,
we call this term an auxiliary spring system. That is applied to
compensate for the interaction of neighboring unit cells with
different B-site ions:

V aux({u}, {w}, σ ) =
∑

R

∑

T

QT,R(σT )eT,R · u(R)

+
∑

R

∑

T

ST,R(σT ) f T,R · w(R). (5)

In detail, the term in Eq. (5) is used to calculate the influ-
ences of adjacent unit cells on the dynamics of the local mode
u(R) and the acoustic displacement variables w(R). Here,
the parameters QT,R(σT ) and ST,R(σT ) account for differences
between the substituted system’s interactions compared to
the pure system’s interactions. T denotes the translation to
unit cells up to the third nearest neighbor shell (3NN). eT,R

represents a unit vector joining the site T to the center of
u(R). Analogously, the unit vector f T,R is joining the site T
with the center of w(R). At present, we restrict the auxiliary
spring system to the first order [10] in u(R) and w(R), but it
can be systematically expanded to higher orders, if required.
As a final correction, we want to include the effects of lat-
tice expansion or contraction in terms of homogenous strain
induced by impurity ions. To compensate for these volume
changes in the extended Hamiltonian, we apply a hydrostatic
pressure [14,15] as a function of concentration. It should be
noted, that this volume change directly affects the correction
parameters ST,R(σT ). In principle, these parameters would
have to be determined individually for each concentration,
but we decided to keep them constant in order not to lose
the flexibility of the approach. This assumption is a good
choice for small concentrations, but for higher concentrations
an overestimation of local distortions can occur.

The parameterization of the extended Hamiltonian by first-
principles calculations is detailed in the next section. For using
the adapted Hamiltonian for MD simulations, we customized
the feram code developed by Nishimatsu et al. [7,17,20].

C. Computational details

For all first-principles calculations, we used the projector-
augmented [21] DFT package VASP [22–25] and the PBEsol
[26] as exchange-correlation functional. An energy cutoff of
520 eV was used throughout all calculations. More details
on DFT calculations and the following parametrization can
be found in the Supplemental Material [27]. To increase the
accuracy of the potential energy surface of pure BT, a large
number of anharmonic couplings to higher energy phonons
were considered, as described in detail in our previous publi-
cation [9]. These couplings were determined by an elaborate
fitting procedure, as described in Ref. [9].

1. Parametrization of BZT

The parametrization of the extended Hamiltonian for BZT
by means of DFT calculations is discussed here. First, we

calculated the parameters for the adapted local-mode self-
energy using a 5-atom unit cell. The lattice constant of this
unit cell was set to that of pure BT (ai = 3.987 Å) [9]. Subse-
quently, the B-site was replaced by Zr. The unit cell served as
the basis for the calculation of displaced structures given by
the displacement pattern of the soft-mode found in cubic BT
(see Ref. [9] for the pattern). These displacements were con-
structed for directions 〈001〉, 〈011〉, and 〈111〉, respectively,
whereby DFT was used to calculate the total energy. For the
5-atom unit cell calculations, a k grid size of 8 × 8 × 8 was
chosen. The results were then used to fit the Eqs. (14a)–(14c)
from Ref. [7]. The resulting parameters are listed in the Sup-
plemental Material [27] in Table SI. The calculation of the
parameter �κ2 was performed as follows. 2 × 2 × 2 super-
cells were constructed from the 5-atom unit cells. These were
used to perform linear-response calculations (DFPT). The k
grid was set to 4 × 4 × 4. The phonon band structure was
calculated for the respective systems from these calculations.
Subsequently, the procedure as in Ref. [7] was used to deter-
mine short-range parameters. From this, the parameters �κ2

for BZT were determined (see Table SI in the Supplemental
Material [27]). The DFPT calculations just mentioned were
also used to calculate Z∗ for a Zr unit cell, obtained from the
Born effective charges.

For the calculation of the parameters for the auxiliary
spring system, as a first step, a 3 × 3 × 3 supercell of pure
BT was constructed. Subsequently, one B site in this supercell
was substituted with Zr. The atoms of the local unit cell con-
taining the substituted atom were then displaced in discrete
steps using the displacement pattern of the soft mode of pure
BT. DFT was then used to calculate the total energy of the
system and the forces acting on the atoms. Here, a k grid of
size 2 × 2 × 2 was chosen. From these data, the parameters
QT,R(σT ) were determined using the total energies and fit-
ting a linear function. To avoid double-counting, contributions
were already taken into account by the Hamiltonian of pure
BT, a reference system was calculated, and the corresponding
total energies were subtracted from the substituted supercells.
That procedure was repeated by displacing local unit cells
up to the 3NN shells with respect to the substituted Zr ion.
For the interaction between two Zr unit cells, two Zr ions
were substituted as nearest neighbors. The calculation of the
parameters is analogous to the above-mentioned procedure.
The correction parameters ST,R(σT ) were calculated using
a A-centered basis and displacing the ions according to a
translational eigenvector. Here, also the lattice constant was
adapted to get the correction parameters in accordance with
the lattice change already captured by the applied pressure
correction. The estimation of the parameters using the total
energy is analogous to the procedure described for QT,R(σT ).
All results of the parameters discussed here are listed in Table
SII in the Supplemental Material [27].

Next, a pressure correction was calculated to describe the
Zr induced expansion or contraction of the lattice. For this
purpose, the dependence of the BT lattice constant on an
external pressure was first calculated using DFT. Then, a
supercell of size 2 × 2 × 2 was constructed and substituted
with different concentrations of Zr. The full range of concen-
trations was used. These structures were relaxed using DFT
and thus a dependence of a pseudocubic lattice parameter on
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concentration was calculated. Using both results, a linear pres-
sure correction of the magnitude P(x) = −19.5x GPa could
be calculated, where x denotes the concentration of Zr. From
this result, it is clear that Zr exerts a negative pressure on
the lattice, causing it to expand. This pressure correction is
in good agreement with results of Mentzer et al. [14]; the
small deviations can be explained by the different choice of
the exchange-correlation functional. The corresponding plots
of the pressure and concentration dependence of the lattice
parameter can be found in the Supplemental Material [27],
Figs. S1–S3.

2. Parametrization of BNT

As a next step, we parameterized an effective Hamiltonian
for BNT. The main difference to BZT stems here from the
heterovalency of Nb. This leads to charge compensation by Ti
vacancies (VTi), as discussed in Ref. [16]. Thus, we simulta-
neously introduced Nb and VTi into the effective Hamiltonian,
rather than Nb alone. To probe the effect caused by the intro-
duction of these species, DFT calculations were performed on
5 × 5 × 5 supercells; the results of which are shown in our
previous work [16]. It turns out that the titanium vacancy has
a considerable influence [16] on the surrounding unit cells.
The unit cell containing VTi, on the other hand, contributes
with its local dipole moment only to a limited extend to the
polar order of the system. This is based on the observation
from phonon calculations where the unit cells with Ti vacan-
cies couple to the relevant polar modes of the surrounding
unit cells only by a nonpolar oxygen oscillation. Owing to
that, these unit cells are henceforth considered static with a
zero net dipole. Consequently, the effective Hamiltonian was
extended by another species σ and its associated parameters.
The interactions of Ti vacancies with surrounding unit cells
were considered by the parameters QT,R(σT ). The parameters
for the adapted self-energy are not needed for the Ti vacancy
since these unit cells are fixed with respect to the variable u
for the simulation. What remains are the parameters of the
auxiliary spring system for the interactions between the unit
cells Ti-Nb, Ti-VTi, Nb-VTi, and Nb-Nb, as well as the adapted
self-energy, effective mass, and Born effective charge for Nb
unit cells. The parameterization of the latter is analogous to
that for the case of BZT, but a suitable charge compensation
has to be applied in the DFT calculations. The calculation of
the parameters QT,R(σT ) was thus carried out as follows: A
3 × 3 × 3 supercell was first prepared from pure cubic BT,
then, for the calculation of Ti-Nb interactions, one B site was
substituted with Nb. For Nb-Nb interaction, two Nb ions were
introduced. The interaction between Ti or Nb unit cells with
Ti vacancies was calculated by removing one Ti ion from the
first coordination shell within the supercell. Subsequently, all
supercells were calculated with DFT, and the resulting total
energies were used to determine the parameters. The rest of
the procedure is analogous to BZT. The estimation of the
correction parameters ST,R(σT ) for the acoustic displacement
variables was carried out analogously to the procedure ex-
plained for BZT. All parameters derived for BNT are listed
in the Supplemental Material [27]. The pressure correction
must be computed also for BNT to account for any changes
in the lattice due to substitution, and we can use the pressure

dependence of the BT lattice parameter, analogous to BZT.
The following calculations were then performed to estimate
the dependence of the lattice parameter on the Nb concentra-
tion. Supercells of size 2 × 2 × 2 and 3 × 3 × 3 were used to
substitute one or more sets of four Nb ions and one Ti vacancy.
Subsequently, these structures were relaxed using DFT and a
pseudocubic lattice constant was calculated. This results in a
pressure correction of magnitude P(x) = −8x GPa, where x
is the concentration of Nb ions. This outcome reveals that Nb
also induces an expansion of the lattice, which is, however,
smaller as compared to BZT.

3. MD simulations

For the supercells used for MD simulations, the question
of the distribution of substituted atoms arises. In the case of
BZT, a random distribution [28] as well as a slight cluster-
ing [29–31] of Zr ions have been reported experimentally.
In our case, we also tested different distributions, but finally
convened on a randomly distributed arrangement of Zr ions.
First of all, we determined effective cluster interactions from
VASP supercell calculations, which were then used to perform
Monte Carlo (MC) simulations to determine chemical order-
ing as a function of temperature [32]. The MC simulations
showed that for experimentally relevant temperatures no or-
dering is found. In order to generate the disordered supercells,
a random generator was used to create input structures for
MD simulations. A simulation box of size 30 × 30 × 30 was
chosen. Subsequently, a series of structures with different
concentrations of Zr were prepared. An MD run with the
following settings was performed for each of these structures.
A velocity-scaling algorithm was used to cool the system
from 800 K to 20 K in steps of 5 K. At each temperature,
the system was thermalized for 200 ps and averaged over
600 ps with a discrete-time step of 2 fs. The output config-
uration of dipoles was used as the initial condition for the
following temperature. All simulations were carried out in the
canonical ensemble. The obtained results made it possible to
derive the phase diagrams. The transition temperatures were
determined using the following procedures. For concentra-
tions below the tricritical point, the results of polarization vs
temperature and the change in shape of the simulation cell
as a function of temperature were used. For concentrations
beyond the tricritical point, the permittivity as a function of
temperature was used to estimate Tm. The random distribution
as determined by the MC simulation yields the best agreement
of the phase diagram with experiments.

III. RESULTS

A. Simulations for BZT

1. Phase diagram

As the first step, we use our obtained model to simu-
late the phase diagram of BZT as a function of temperature
and concentration. The simulation results of the phase di-
agram for BZT are presented in Fig. 1(a). It can be seen
that the transition temperature between the paraelectric and
ferroelectric phase initially decreases almost linearly with
Zr concentration. At about 35% Zr content, this transition
begins to flatten out. The transition boundaries between the
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FIG. 1. Phase diagram of BZT simulated with effective Hamiltonians (a),(c) and experimentally observed values (b). The experimental
values are from Refs. [1,33]. The simulated data from literature were taken from Ref. [14]. TC−T , TT −O, TO−R transitions between cubic (C),
tetragonal (T), orthorhombic (O), and rhombohedral (R) phases, respectively. Tm temperature of maximum in dielectric permittivity.

tetragonal and orthorhombic phase, and between the rhombo-
hedral and orthorhombic phase increase significantly with Zr
content until they merge at the tricritical point, which is lo-
cated at about 12.5% Zr content. Compared to the experiment
[1,33] [see Fig. 1(b)], our simulations yield slightly lower
transition temperatures for concentrations between 0 and 30%
of Zr. For higher concentrations, the simulated transition tem-
peratures slightly overestimate the experimental data. This
indicates that the pressure correction for this region of concen-
trations might be too strong. Furthermore, it should be noted
that the transition temperatures depend relatively strongly on
the distribution of Zr ions. Overall, the shape of the phase di-
agram is reproduced very well. Figure 1(c) shows simulation
results from the literature [14], which were calculated using
a different effective Hamiltonian. The difference lies on the
one hand in the procedure of parameterization of the Hamil-
tonian for pure BT and on the other hand in the inclusion
of substituted unit cells. For the latter, the application of a
concentration-dependent pressure and the use of a restoring
force was chosen in the work of Mentzer et al. [14]. The first
term is equivalent to the pressure correction used in this work
with the applied pressures agreeing well with our values (see
Sec. II C 1 for details). The restoring force approach is sim-
ilar to our correction of the local mode self-energy. Another
difference is the auxiliary spring system for the correction
of effects originating from the substituted unit cells, which
is not included in the work of Mentzer et al. [14]. The ref-
erence simulation shows good agreement with our results as
well as with the experimental data. For higher concentrations,
our simulation yields slightly better comparison with the ex-
perimental data (i.e., lower transition temperatures), which
can mainly be attributed to the marginally different pressure
correction. However, a direct comparison should be made
with caution since the distribution of Zr cations used in the
reference simulation is not available.

2. Dielectric properties

Here, we use our MD simulations to calculate dielectric
properties for the concentrations of 5% Zr (BZT05) and 50%
Zr (BZT50). A simulation box size of 30 × 30 × 30 was
used for this purpose. The remaining settings for the MD
simulations can be found in the previous section. Again, a

cooling series was simulated for both systems, with the output
configurations serving as input for the following temperature.
The results for polarization as a function of temperature can be
seen in Figs. 2(a) and 2(b). Ferroelectric behavior is observed
for BZT05, with all three phase transitions of BT still clearly
visible, albeit the spacing between transitions is closer than in
pure BT case. The absolute values of the spontaneous polar-
ization are in good agreement with experimentally observed
values [34] and other simulations [14] from the literature. For
the case of BZT50, no macroscopic polarization is detected,
which means that the system remains in a nonpolar state for
any simulated temperature. Furthermore, the strain tensor was
examined, indicating that the system possesses cubic structure
throughout all temperatures.

To calculate the susceptibility, we employed the scheme of
Akbarzadeh et al. [13]. On the one hand, the susceptibility was
determined by a direct method. For this purpose, an external
field was applied during cooling MD runs in 〈111〉 direction
with a maximum magnitude of 50 kV/cm. From this, the
response of the system can be used to calculate the suscep-
tibility in the respective directions. A reference simulation
was performed for systems with spontaneous polarization to
calculate the response induced purely by the applied external
field. The corresponding formula reads

χdirect
αβ = NZ∗(〈uα〉ext − 〈uα〉ref )

V ε0Eext,β
. (6)

Here, 〈uα〉ext is the average amplitude of the local mode
when applying an external field Eext. 〈uα〉ref represents the
average amplitude of the reference simulation. α and β

denote the Cartesian components of the local mode vector and
the electric field vector. ε0 is the vacuum permittivity. Z∗ is the
Born effective charge and V the volume of the supercell. N is
the number of unit cells within the supercell. This susceptibil-
ity corresponds to the static limit. On the other hand, we use
the dipole fluctuations as described by the correlation function
(CF) to calculate the susceptibility:

χCF
αβ = (NZ∗)2

V ε0kBT
(〈uαuβ〉 − 〈uα〉〈uβ〉). (7)

In this equation, ui represents the Cartesian component of
the local mode vector. T denotes the temperature and kB is
the Boltzmann constant. The obtained susceptibility can be
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FIG. 2. Comparison of BZT05 (5% Zr) and BZT50 (50% Zr) in terms of the polarization (a),(b), the susceptibility (c),(d), and the average
displacement of the two B-site species (e),(f). The susceptibility was calculated using a direct method and the correlation function (CF)
describing fluctuations of the dipoles, respectively. The average displacement is calculated using the average absolute values.

referred to as the low-frequency dielectric response of the
system [13].

The corresponding results are illustrated in Figs. 2(c) and
2(d). Here, we averaged the three diagonal components of
the susceptibility tensor. In the case of BZT05, we observe
good agreement between the two methods for determining
susceptibility. The plot shows three peaks that can be assigned
to the phase transitions of the parent system. It can already be
seen that the individual transitions get closer to one other and
lead to a possible diffuse transition between the paraelectric
and ferroelectric phases. Furthermore, a Curie-Weiss (CW)
behavior is found above Tc for both curves. For BZT50, a
broad peak in χCF with a Tm of 180 K is observed, which
is in good agreement with experimental data [35,36]. The
static susceptibility shows a steady increase with decreasing
temperature, with a tendency to flatten as low temperatures are

approached. This behavior is consistent with experimentally
measured patterns [37] in relaxor ferroelectrics. Furthermore,
the results of BZT50 are in qualitatively good agreement with
the simulations of Akbarzadeh et al. [13]. Nonetheless, we
observe that the behavior of the static susceptibility in the low
temperature region differs both in terms of shape, as well as
in the absolute value as compared to Akbarzadeh et al. [13],
if we apply moderate field strengths up to 50 kV/cm. Since
the shape obtained in our work is more consistent with the
experiment [37], we ascribe this difference to a more suitable
choice of the applied external field strength. Hence, a com-
parison of the static susceptibility at the lowest temperature to
Akbarzadeh is not necessary. Akbarzadeh et al. [13] provided
an interesting analysis in the medium and high temperature
regions. They reported that at temperatures above the Burns
temperature Tb, both approaches (direct and CF) obey the
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CW law, which we also observe (see more details in the
Supplemental Material [27]). In our case, the fit of the CW law
yields a T0 of 140 K which is in reasonable agreement with an
experimental value [35] of 114 K. They further reported that
in the region below Tb down to ∼ 240 K the direct approach
still follows the CW law, while CF starts to deviate. Finally,
according to Ref. [13], both methods exhibit deviations from
the CW law below 240 K. We can only partially confirm this
peculiar behavior in the regions below Tb – in our case, a
slight deviation between both methods is observed for this
temperature range, but both methods start to deviate from the
CW law for temperatures below ∼340 K. Unfortunately, it
is not possible to trace down the origin of the discrepancy,
however, we suspect it might be related to the parametrization
of the model itself or the choice of the applied external field
strength, which is consistent with the odd behavior of static
susceptibility in the low temperature region.

To quantify the contribution to polarization by the differ-
ent unit cells, the shifts of the B-site cations was calculated
with respect to the center of mass of the oxygen octahedra.
The basis for these calculations is MD simulations with the
same settings described in detail in the previous section. The
properties discussed further have been averaged over 600 ps.
The relative displacement of the B-site cations can be seen
in Figs. 2(e) and 2(f). In BZT05, it is clear that Ti atoms
determine most of the polarization in BZT, while Zr atoms
show only a slight off-centering. In our simulation of BZT25
(25% Zr content), at low temperatures, Ti ions are found
to have an average displacement of 0.16 Å and Zr ions of
0.04 Å. That is in excellent agreement with values from a
DFT study of BaTi0.74Zr0.26O3 [38], which predicts a shift
of 0.17 Å for Ti ions and 0.03 Å for Zr ions. In the case
of BZT50, a slight off-centering of the B-site cations is
observed throughout all simulated temperatures, increasing
with decreasing temperature. In contrast to the work of Ak-
barzadeh et al. [13] we observe this increase not only for
Ti but also for Zr ions. Although macroscopically there is
no polarization of the system, the B-site ions shift to an
energetically preferred position outside the center of the
unit cell [28,38,39]. The increased off-centering at higher
temperatures compared to BZT05 can be attributed to the ex-
pansion of the lattice, leading to increased activity of the local
modes.

3. Hysteresis loops

Here, we present simulated hysteresis loops of BZT05 (5%
Zr), BZT15 (15% Zr), BZT20 (20% Zr), and BZT30 (30%
Zr). For that purpose, a simulation box size of 30 × 30 × 30
was chosen. The frequency of the oscillating field was set to
1 GHz, whereby the maximum field strength was 100 kV/cm,
always applied along the 〈111〉 direction. For each composi-
tion and temperature several cycles were recorded. Figure 3
shows the hysteresis loops computed at the temperatures of
250, 300, and 350 K. In this figure, the net polarization is
plotted. For BZT05, a classic ferroelectric behavior is ob-
served at room temperature. Lowering the temperature leads
to an increase in the saturated polarization and an increase
in the remanent polarization. Increasing the tempera-
ture reduces the remanent polarization and the saturation

FIG. 3. Hysteresis loops of BZT05 (5% Zr), BZT15 (15% Zr),
BZT20 (20% Zr) and BZT30 (30% Zr) at temperatures of 250, 300,
and 350 K obtained from MD simulations.

polarization. In the case of BZT15, slightly above Tc a
nonlinear trend of the hysteresis loop with zero remanent
polarization is observed, which changes to a linear behavior
when the temperature is increased further. We observe lower
saturation polarization for a higher Zr content at the given
temperature. Furthermore, hysteresis progressively dwindles
and disappears entirely in the case of BZT30, leading to a
linear dielectric behavior, as is expected by the increasing
suppression of long-range ferroelectric order in BT by adding
Zr. A comparison with experimental loops [40,41] from the
literature shows that our simulated loops reproduce the gen-
eral behavior of the BZT system, with absolute values of the
saturation polarization in good agreement with the measured
values. However, the associated field strengths are slightly
overestimated in the simulated curves. This might be due to

224109-7



FLORIAN MAYER et al. PHYSICAL REVIEW B 106, 224109 (2022)

the fact that the simulation assumes a perfect system where
neither leakage currents nor other defects can occur.

Interestingly, the individual components of polarization
(not shown) reveal that for concentrations between 10% and
20% of Zr, each of the three ferroelectric phases can be stabi-
lized by applying external fields in certain directions. Indeed,
it confirms that the three phases near the tricritical point are
energetically very close to each other. This phenomenon has
already been shown and discussed in detail by Mentzer et al.
[14].

B. Simulations for BNT

1. Phase diagram

First, we use our parameterization for BNT to simulate
the phase diagram. The settings of the MD simulations re-
quired for this are analogous to the phase diagram of BZT.
Due to lack of experimental evidence on the distribution of
Nb and VTi in BNT, we considered a spectrum of possible
distributions and chose the one leading to the best match to
experimental phase diagram. The choice of the final config-
uration was also motivated by previous DFT calculations of
5 × 5 × 5 supercells performed applying complete structural
relaxation, which indicated that (i) Nb cations tend to cluster
randomly around Ti vacancies (four Nb atoms for one Ti va-
cancy) and that (ii) dissociated clusters (i.e., where Nb atoms
are at least one nearest neighbor away from the Ti vacancy)
are energetically slightly favorable [16]. For more details we
refer readers to the Supplemental Material [27]. The results in
Fig. 4(a) were obtained for a randomly distributed arrange-
ment of Nb ions and Ti vacancies, which corresponds to
the aforementioned dissociated clusters. Compared to BZT,
a faster decrease in the transition temperature between the
paraelectric and ferroelectric phases is observed here. Further-
more, the transition between the tetragonal and orthorhombic
phases is flatter and almost constant up to the tricritical point.
On the other hand, the transition between the orthorhombic
and rhombohedral phases increases slightly. The tricritical
point is found between 7.5% and 10% Nb content.

For comparison with experimental data, values from the
literature as determined from dielectric measurements [42]
are listed in Fig. 4(b). However, since these results do not
show transition temperatures for all three phases, we also
performed Raman measurements on BNT samples. These
samples were prepared via the solid-state route and analyzed
using a commercial Raman spectrometer. Details of both
sample preparation and experimental parameters are reported
elsewhere [43]. Raman spectra were collected as a function
of temperature from −196 ◦C to 300 ◦C using 25 ◦C inter-
vals. The phase diagram in Fig. 4(b) represents the resulting
data. Compared to values from Ref. [42], a slightly higher
transition temperature is observed for lower concentrations.
However, a good agreement between the two experimental
data is observed for higher concentrations. Comparison of
the experimental data with the simulation data shows that the
simulated transition temperatures agree very well for con-
centrations <10%. For higher concentrations (�15%), the
simulation slightly overestimates the experimental data. This
can again be attributed to the applied pressure correction,
which appears to be overestimated for higher concentrations.

FIG. 4. Phase diagram of BNT as a function of concentration and
temperature. (a) shows the simulated data. (b) experimental data ob-
tained by Raman measurements (green symbols) and from dielectric
measurements presented in literature [42] (red symbols). TC−T , TT −O,
TO−R transitions between cubic (C), tetragonal (T), orthorhombic
(O), and rhombohedral (R) phases, respectively. Tm temperature of
maximum in dielectric permittivity.

Overall, the simulation reproduces the phase diagram quite
well.

2. Dielectric and structural properties

To further test the parametrization, dielectric properties
and structural properties were calculated using MD on 30 ×
30 × 30 supercells for BNT05 and BNT15 (5% and 15%
Nb content, respectively). Only lattice parameters for BNT15
were calculated using a larger (96 × 96 × 96) supercell size,
as early tests showed that smaller supercell sizes (e.g. 30 ×
30 × 30) might lead to difficulties in the determination of
lattice type in BNT15 due to the presence of local distortions.
Large supercell sizes, in fact, statistically average local distor-
tions and yield a cubic structure for temperatures between 20
and 800 K (for BNT15). That agrees well with experimental
data [44] for Nb-substituted systems above a concentration of
12.5% Nb. For BNT05, a cubic phase is found at temperatures
above 300 K. Furthermore, this system undergoes three phase
transitions analogous to the parent system [see Fig. 5(a)].
The ground state at very low temperatures is a rhombohedral
structure. The calculation of the static χdirect as well as low-
frequency susceptibility χCF is plotted in Figs. 5(c) and 5(d).
For the calculation of the static susceptibility, an external field
with a maximum amplitude of 50 kV/cm was applied in the
〈111〉 direction. Similar behavior can be seen for BNT05 as
for BZT05. However, the transition temperatures are signifi-
cantly lower than those of BZT05. For BNT15, χdirect shows
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FIG. 5. Comparison of dielectric properties for BNT05 (5% Nb) and BNT15 (15% Nb). (a) and (b) show the polarization of the system.
(c) and (d) show the susceptibility obtained from the direct method and the correlation function (CF) describing fluctuations of the dipoles,
respectively. (e) and (f) show the average displacement of the individual B-site cations calculated using the average absolute values.

a typical relaxor behavior [37]. The corresponding χCF shows
a broad peak with a Tm of 175 K. Such behavior was found
earlier in BZT50 and suggests that in BNT the onset for
relaxor behavior happens at less than 15% of Nb, as also con-
firmed experimentally [16,42]. Furthermore, a CW behavior
for higher temperatures is observed for both systems above Tc

and Tm, respectively.
Next, we focus on the averaged displacements of the B-site

cations in BNT. The calculation of these displacements was
carried out as described for BZT. Figures 5(e) and 5(f) show
the shift for Ti and Nb ions in BNT05 and BNT15. Compared
to BZT, Nb ions experience a significantly larger displacement
than Zr ions. This local cation off-centering has already been
confirmed by experiments [44]. It should be mentioned that a
spontaneous polarization below 300 K is observed for BNT05

whereas BNT15 shows a nonpolar behavior [see Figs. 5(a)
and 5(b), respectively). However, an averaged nonzero
displacement is found in BNT15 at all temperatures simu-
lated. That can be attributed to the lattice expansion through
the applied pressure correction, similar to BZT50 and dis-
cussed in detail in Sec. III A 2. Furthermore, the fact that Nb
shows a relatively large displacement also suggests that unit
cells containing Nb at the B site may contribute substantially
to the polarization. Hence, Nb unit cells may be considered
only as a weak disruptor of the long-range ferroelectric corre-
lation. In BNT, however, we need to consider also the presence
of Ti vacancies, which indeed seem to affect the polar order
in BNT significantly. Ti vacancies were considered as polar
inactive in our parametrization, since DFT calculations found
no significant contribution originating from the local mode,
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FIG. 6. Hysteresis loops of (a) BNT05 (5% Nb) and (b) BNT15
(15% Nb) at temperatures of 200, 250, and 300 K obtained from MD
simulations.

i.e. nonpolar oxygen oscillation. However, these vacancies
are considerably coupled to the surrounding unit cells, as
described by the auxiliary spring system. That results in a
constellation of VTi unit cells surrounded by unit cells with
polarization biased in specific directions. These ensembles
of unit cells can act as pinning centers for the surrounding
ferroelectric matrix and thus can be considered as potential
disruptors of the long-range ferroelectric order. In fact, in-
creasing Nb concentration will increase the concentration of
ferroelectrically inactive nanodomains centered on Ti vacan-
cies, leading to overall disruption of the long-range correlation
of B-site displacements.

In summary, the interplay between Ti vacancies and Nb
unit cells as well as Ti unit cells appears to be responsible for
the more effective disruption of long-range correlation within
BNT compared to BZT.

3. Hysteresis loops

Finally, we consider hysteresis loops for BNT. Again, unit
cells of size 30 × 30 × 30 were used. The settings for the
MD simulations are analogous to those of BZT. Figures 6(a)
and 6(b) show the simulated hysteresis curves for BNT05 and
BNT15 at different temperatures. For BNT05, a temperature
of 200 K results in a saturated ferroelectric loop. When the
temperature is increased, the remanent and the saturation po-
larization are reduced. A temperature close to the transition
temperature (300 K) gives a nonlinear trend without showing
a ferroelectric behavior anymore. Analogously to BZT, the

application of an external field can also stabilize the ferro-
electric phases of the parent system in the case of BNT. This
indicates that also for the case of BNT the different phases
close to the tricritical point are energetically very close to
one other. For BNT15, a linear dielectric response is observed
for temperatures above 250 K. At 200 K the loop shows a
nonlinear behavior but without remanent polarization. Fur-
thermore, in BNT15, no ferroelectric behavior can be induced
by applying an external field.

IV. CONCLUSION

In this work, we carried out a parameterization of ef-
fective Hamiltonian models to describe the potential energy
surface of BT-based substituted systems, which allowed the
calculation of structural and electrical properties of the con-
sidered materials. The theoretical framework was based on
the extension of our effective Hamiltonian approach for BT,
considering substituting cations as perturbations of the parent
system. First, we parametrized the homovalently substituted
BZT system and presented a benchmark comparison with the-
oretical and experimental results from literature. Our model
demonstrated good agreement with previous results on phase
transitions, susceptibilities, and atomic displacement patterns.
Only a slight overestimation of transition temperatures was
found for high substituent contents, which was ascribed to
the applied pressure correction and the Zr cation distribution.
Following, the model was applied to the parametrization of
the heterovalently substituted BNT system. The simulated
phase diagram of BNT is in good agreement with our Ra-
man measurements and experimental data from the literature.
Furthermore, simulations have shown the onset of relaxor
behavior at concentrations of about 15%, in good agreement
to experiments. The associated structure remains macroscop-
ically cubic and nonpolar for BNT15, and the dielectric
behavior is in accord with experimental data for all simulated
BNT compositions.

In summary, two parameter sets were presented which can
be used for further studies on the investigated BZT and BNT
systems, and can be adapted to represent other BT-based solid
solutions. Since this approach requires only a small amount
of computational effort, even very large supercells can be
simulated in the future, leading to a realistic description and
prediction of structural and electrical properties in BT solid
solutions. The large-scale implementation of such simulations
could become a decisive step towards the design of composi-
tions with unprecedented properties.
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